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Abstract: Parking in European town centres is a challenging problem that can be addressed from multiple lines of attacks. If 

informed solutions based on metered parking spots are evolving in some big cities, traditional on-street parking generally 

makes up the majority of the parking capacity. In such case, a probabilistic approach is the only suitable one as there is never 

any guarantee that a vacant spot will still be available within the time needed to reach it. In this paper, we first define a 

complete probabilistic model that can be used to simulate realistically the vacancy of parking spots among streets of a city. 

This model includes the possibility to get short time information about street occupancy, along with the prediction of how 

this availability evolves on the long run. Based on this model, we present a methodology to evaluate the performances of a 

route returned by a parking strategy in terms of expected time to reach a target goal. This time includes how long it is 

expected to park, as well as how long the driver still needs to walk until his destination. Then, we use this methodology to 

evaluate the gain, in time, of our parking strategy, as well as its sensitivity to the uncertainty of the actual parking difficulty. 

 

1. Introduction 

Everybody has already experienced the daunting task 

of searching for a parking place inside a crowded city centre. 

In addition to being stressful and time-consuming, it is also a 

real society problem that may cause up to 30 percent traffic 

increase in big cities [1], not talking about pollution. This 

problem is well identified and many solutions have been 

suggested as countermeasures for this matter of great 

ecological and social importance. Most of them rely on 

sensors put around metered parking spots, like [2] [3], but 

because of their cost are inherently more difficult to scale up. 

Other approaches to collect statistics or real-time information 

about parking spot availability consist in using the vehicles 

themselves as probes. This is a reasonable assumption 

considering the increase of connected cars today, at least 

thanks to the driver smartphones. Parking spots could be 

detected when cars stop along the street, while free spots can 

be announced as soon as they leave. Many car markers also 

consider scanning directly parking spot availability while 

driving with the help of the car ultrasonic sensors or front 

camera. This leads to approaches consisting in the exploration 

of the known available free spots in an optimal way 

considering the driver’s destination [4]. 

If those alternative solutions sound legitimate, they are 

not flawless. For example, it is especially uneasy to be sure 

that what appears to be free parking spot is indeed a valid one. 

It could just as well be a private garage or a not legal parking 

area. In addition, collecting parking statistics is only valuable 

if the availability of free spots is scarce, which means that the 

measures are particularly sensitive to errors made on those 

free detections. If an attractive neighbourhood contains, on 

average, only one free spot out of one hundred, evaluating 

such low density is particularly difficult and put a lot of 

pressure on the system capability to detect it. 

Even putting this problem aside, raw information 

about parking statistics or real-time availability are not 

enough to efficiently guide the driver to his destination. 

Firstly, knowing that a parking spot is vacant right now (short 

term observation) is not sufficient for a successful search, 

because it does not mean that it will still be the case upon 

arrival. This is especially true if there is a lot of competition 

among drivers. In fact, parking search is probabilistic by 

nature and working with such probabilities (long term 

observation) helps addressing this problem by indicating high 

likelihood parking streets to the driver. However, a good 

strategy to guide the driver to its destination still needs to be 

elaborated. 

A good parking route should not be deterministic but 

rather try to accumulate as much probability mass as possible. 

However, this optimization must be done under the cost 

constraint of time needed to reach the final destination. In the 

case of the parking problem, this cost is the expected total 

time to reach the final destination. This latter can be separated 

into the expected time to find a free spot, plus the 

deterministic time to walk to the destination. But because of 

this indeterminism, the route can potentially be infinite while 

the cumulated probability to park converges to one. Moreover, 

testing a street at a given time without success does not mean 

that testing it later is useless, because there is always a chance 

that someone leaves a bit later. For example, parking areas 

with a high churn rate may be more interesting to be tested 

again. 

As we can see, searching for a vacant parking spot 

requires a stochastic strategy, along with several hypotheses 

or measurements to rely on. These are mainly the travel time 

of each road element, the chances of success in each street 

and the dynamic of the underlying parking events. Of course, 

all those parameters can strongly vary over time, and 

sometimes in a very unpredictable way. It is therefore 

interesting to understand how far this lack of knowledge can 

be detrimental to the parking strategy. 

In this paper, we investigate the performances of our 

on-street parking algorithm [5] in the context of the partial 

knowledge of all the street attributes cited above. This 

strategy, which we called the ‘winning strategy’, showed 

promising results provided the different probabilities to park. 

However, the availability of this information is a strong 

assumption, especially if they are required with high 

precision. That is why we developed a test setup enabling to 
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acquire considerable insights about the sensitivity of our 

probabilistic routing to the different measurements it is based 

on. As expected, any uncertainty on the underlying parking 

model deteriorates the driver gain (i.e. the total time to reach 

his destination). Nethertheless, this algorithm is quite robust 

and tolerates many parameter approximations without losing 

too much of its advantage. Moreover, we show that the sole 

knowledge of the parking spot locations is enough to 

considerably lower the total time to park, provided a 

reasonable approximation of the overall occupancy rate. 

 

1.1. Background 

In the context of parking search, guiding the driver to 

the closest free spot does not provide a satisfactory solution. 

Instead, he must visit as much parking spots as possible to 

maximize the odds of finding a suitable one. Parking is 

inherently probabilistic and modelling the road network as a 

graph, each edge having a probability to hold at least one 

vacant parking spot, is a natural and more powerful extension 

than the simple recording of free spot locations. Indeed, any 

free spot detection can be easily modelled with a probability 

to park equal to one. However, this short-term detection has 

a decreasing life time: as time progresses, its influence on the 

probability to find a vacant space decays. Such probability 

model is introduced in [6]: availability of road network 

resources are modelled as continuous-time Markov chains. 

Short time observations ensure to take new fresh information 

into account, while the model falls back nicely on long-term 

average information as time passes, allowing depleted 

resources reappearance. This work does not focus especially 

on street parking as any kind of resources is considered; 

however it provides an example for this particular use case. 

Two algorithms are presented for optimal search of a solution. 

Both are based on backtracking. 

A detailed street parking occupancy model aimed at 

predicting spot vacancy states is presented in [7]. Built on 

queueing theory and using a continuous-time homogeneous 

Markov model, its goal is to estimate how the probability 

density function to observe a parking spot in a given 

occupancy state evolves with time. Given any observation of 

resource availability, the model predicts how it evolves in the 

future by considering arrival and parking rate as Poisson 

processes. 

An algorithm specifically designed to seek for a 

probabilistic route in the case of the street parking problem is 

presented in [8]. This work builds on [7] and proposes two 

specific algorithms: the first one uses the underlying 

probability to park to explore the most interesting part of the 

road network traversal tree, pruning branches that seem costly 

at a early stage; the second one can be used when such 

probability information is not available and is based on a 

dedicated heuristic. It also present a study identifying the 

impact of inaccurate probabilities on the final cost of their 

solution. 

Finally, we presented our own algorithm to find a 

solution to the street parking problem in [5]. This one takes a 

different approach, avoiding the exploration of a search tree 

whose width is exponential in the length of the route. The 

methodology is similar to [9] but in the context of on-street 

parking and not inside a parking lot. Based on a fixed-point 

iteration method, our solution computes the expected time to 

reach a given destination from every street in a map, given 

that each street solution depends on the value of its 

neighbours. This solution is optimal if the driver manages to 

park before reaching the street having the minimal expected 

time. In the other case, an updated solution can be computed 

based on the new understanding of the probability to park. 

 

1.2. Contribution 

The novelty of this work is twofold. The first 

contribution is a full development and presentation of a 

statistical model simulating the probabilities to park on-street 

based on long-term collected statistics and on short-term 

observations of the street occupancy. Long-term observations 

drive the steady probability to park in each street and only 

depends on its capacity and average occupancy rate. On the 

other hand, short time observations change those probabilities 

for a while and the model describes the dynamic of the 

relaxation to the steady state. This model has been 

implemented in a simulator in order to test the performances 

of any parking strategy in a realistic configuration. A 

complete description of the definition of performance is given, 

along with the step by step procedure to implement it. 

In a second time, we use this simulator to evaluate the 

performances and robustness of the parking strategy 

presented in [5] and that we call the winning strategy. The 

goal of our approach is to understand the sensitivity of our 

methodology against the correct knowledge of its 

environment. Indeed, a parking route is useless if it finally 

makes the driver loose time because of the erroneous guess 

of any variable. Those ones are typically the probabilities to 

park in streets and are notoriously difficult to estimate or to 

measure. We propose to evaluate this sensitivity in simulation 

by running the winning strategy on corrupted maps while 

analysing the impact on the original one. The idea is to get a 

better comprehension of the final time a driver could save 

using such strategy, even in the context of incomplete or 

erroneous modelling of the environment. Then, it allows to 

better understand the benefits of the winning strategy and 

what would be the ROI if any effort is conceded to better 

measure the variables influencing the probabilities to park on-

street.  

2. Analytic Street Parking Model  

In this section, we define the road network model that 

we use to make an assessment of our winning strategy, that is, 

a parking strategy optimizing the total time to destination. 

The latter is defined as the time needed to find a suitable 

parking place plus the time to walk to the final destination. It 

is important to simulate all the quantities required to compute 

optimal routes, as well as providing a model that mimics as 

much as possible what we could expect from a ground truth. 

We begin with the definition of the road network as a 

collection of edges then, we continue with the behaviour 

modelling of each edge individually. 

2.1. Road Network Graph 

The winning strategy operates on a graph � = (�, �) 

representing the road network to take into consideration to 

solve the search problem. This network is typically the set of 

reachable streets from the target destination in less than an 

arbitrary limit, in time or distance. The vertices � ∈ � 



 

3 

 

correspond to the crossings (or dead ends) in the network, 

while the directed edges 
 ∈ � ⊆ � × �  match the edges 

joining those intersections. We refer to this graph as a Road 

Network Graph. 

A distance function ��(�): � → ℝ maps every vertex � ∈ � to its shortest path distance to a given target destination ��. This distance can be computed for all vertices at once at 

the beginning of a query with the Dijkstra algorithm. 

A travel time function �(
): � → ℝ  associates each 

edge 
 ∈ �  to its travel time. Those values may be time 

dependent if, for example, they are given by a traffic provider. 

A probability function p(e): E → [0,1]  gives how 

likely it is possible to find a free parking spot for every edge e ∈ E  when driving it down once. Those values are time 

dependent for two reasons. First, the long-term probability to 

park on a edge may change naturally depending on the time 

of the day (e.g. probability to be able to park in a residential 

area is lower during the night). In addition, our model must 

cope with short-term observations collected when driving 

along the streets. For example, if someone tries to park in a 

street with initial probability set to 0.2, without success, then 

this probability immediately drops to zero after this 

observation. Afterwards, this value slowly recovers to its 

initial level as time passes. 

 

2.2. Street Probabilistic Model 

In the previous section, we described the minimal 

model for the winning strategy to operate on. Now, we 

present further the underlying model that enables to simulate 

the probability to park of each edge in the graph in a realistic 

way. 

Our approach is similar to [6] and uses a Markov chain 

to describe the dynamic of the different states in which a 

street can be. We develop it here for completeness. If the 

street has a capacity m, that is the maximum number of cars 

that can park there, then each of the m + 1 states represent 

the respective number of vehicles currently parked. A car is 

rejected if it tries to park in a fully occupied street. 

The flow of incoming vehicles trying to park is 

assimilated to a Poisson process, which means that it follows 

an exponentially distributed inter-arrival times of rate λ. In 

the same way, the parking rate μ of a single car is the inverse 

of the average time it stays on its parking lot before leaving 

again. Brought back to the whole edge e, it means that the rate 

of leaving cars is a function of the number of cars parked n 

by the relation μ! = μ. n. A street can reach an equilibrium if 

those two rates cancel each other, that is, if the number n! of 

cars parked on e is given by #$ = %& ≤ (. In the other case, 

we say that the street saturates and it impacts directly the 

adjacent roads as they must be engaged to absorb the 

incoming flow. 

 

 
Figure 1:Markov chain corresponding to a street with 

capacity m. 

 

Figure 1 depicts the Markov chain corresponding to 

our street dynamic model. The instantaneous probabilities of 

transition from one state to the other can be found by 

considering the limit of a Poisson random process when time 

tends towards zero: 

)%(*) = lim-�→.
(λ. �)/*! . 
1%.-� 

 

with k the number of events happening in an interval of time dt. The result of this limit is given by: 

 )%(0) = 1 − λ. dt + Ο(�7))%(1) = λ. dt + Ο(�7))%(2) = Ο(�7).  

 

Arrivals and departures are independent processes that 

can be combined to derive the transition probabilities from a 

state n to its neighbours. Let’s write: 

 )9:(�) ≔ <(=�:-� = # + 1|=� = #))91(�) ≔ <(=�:-� = # − 1|=� = #))9.(�) ≔ <(=�:-� = #|=� = #)  

 

Then, by considering the instantaneous case when 

time tends towards zero and under the reasonable assumption 

of time homogeneity, we have: 

 )9:(�) = λ. �. (1 − #. ?. �) ≅ λ. �)91(�) = #. ?. �. (1 − λ. �) ≅ #. ?. �)9.(�) = (1 − #. ?. �). (1 − λ. �) ≅ 1 − (λ + #. ?). � 

 

 
Figure 2: Infinitesimal transition probabilities when street is 

in state n. 

The partial view of the corresponding Markov process 

is given in Figure 2. Let’s denote by AB(�) the probability 

that the street is occupied by # cars at time �, i.e. AB(�) ≔<(=� = #) and by A(�) the probability distribution over all 

possible states, i.e. A(�) = [A.(�) ⋯ AD(�)] . According to 

Markov chains theory, the evolution of A  is driven by a 

generator matrix E  whose elements FGH  represent the 

transition rate from state I to state J: 

 AK (�) = A(�). E 

 

In our case, E = (FGH).LG,HLD is a (( + 1) × (( + 1) 

matrix where each element is defined as the derivative of the 

transition probability from I to J. This results in the following 

Q matrix with a tri-diagonal pattern: 
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E =
M
NNN
NN
O−λ λ ⋯? −(λ + ?) λ ⋯2? −(λ + 2?) ⋯3? ⋯⋮ ⋮ ⋮ ⋯ ⋮ ⋮⋯ λ⋯ −(λ + (m − 1)?) λ⋯ (? −(?R

SSS
SS
T

 

Steady State 

Assuming the knowledge of the street capacity, along 

with the arrival and parking rates, the matrix E  enables to 

compute the probabilities being in some states in the future 

starting from an initial state distribution A. = A(0).  One 

quantity of particular interest is the average probability to 

park, that is, the probability that at least one parking place is 

free upon arrival once the system has reached a stationary 

distribution. In the case of our street model, all states of the 

Markov chain can communicate, which ensure a unique 

stationary distribution AV = lim�→V A(�). This one can be found 

by solving equation AV. E = 0. For that matter, it is possible 

to rearrange the Q-matrix so that the system to resolve 

becomes AV. W = 0 with: 

 

W =
M
NN
O−λ ⋯? −λ ⋯2? ⋯⋮ ⋮ ⋯ ⋮ ⋮⋯ −λ λ⋯ (? −(?R

SS
T

 

 

Looking at the last two columns of W makes it clear 

that the system has infinity of solutions. We just have to find 

one and normalize it to get a valid probability distribution. It 

turns out that a (not normalized) solution to this system is 

given by: 

∀ 0 ≤ # ≤ (, ABV = Yλ?ZB
#!  

 

Figure 3 illustrates different probability density 

functions (PDF) at various equilibria. This solution means 

that the stationary distribution only depends on the ratio [ =λ/? of the arrival and parking rates, which is also the number 

of cars parked in the street at equilibrium. The corresponding 

steady probability to park in a street of capacity ( is thus 

given by: 

 <]^_/((, [) = 1 − [D/(!∑ [B/#!DBa.  

 

It is possible to find an upper bound to <]^_/ when [ 

rises above street capacity m. To show it, we first need to 

rewrite <]^_/ as: <]^_/((, [) = 1 − 1∑ Y1 [Bb . (! (( − #)!b ZDBa.  

while this latter is bounded by: <]^_/((, [) ≤ 1 − c∑ Dd _dbedfg ≅ (/[ 

 

The probability to park evolves asymptotically in the 

inverse of (. ?/λ, as depicted in Figure 4. That means that for 

low probabilities to park, those odds are simply defined by 

the ratio between the departure and arrival frequencies, as we 

can expect. 

Transient Phase 

The stationary solution found in previous paragraph 

gives the distribution of parked cars in a street we can expect 

if we only know the ratio of arrival and departure frequencies, 

without any additional observation. Of course, this 

distribution changes as soon as we can get some insight. For 

example, if we observe a street is full at time �. , then the 

corresponding distribution becomes A. = [0 ⋯ 0 1]. 
Now, we would like to turn our attention to the 

transient evolution of A(�) after such observation. As time 

progresses, it becomes more likely that a parking spot 

becomes available again as the initial distribution changes 

and tends gradually towards AV. The solution of this initial 

value problem is given by A(�) = A.. 
h.� , while the Q-

matrix eigenvalues correspond to the time constants driving 

the speed of the recovery. This problem is not trivial in 

general as it requires to compute the generator matrix 

exponential, which implies the usage of any dedicated 

numerical algorithm. Anyway, full accuracy may not be 

needed if we just want a realistic approximation of the PDF 

relaxation. In this case, we propose a simple algorithm to 

simulate the transient phase after an observation of the 

number of cars parked in the street. 

 
Figure 3: Street occupancy PDF at different equilibria. 

 
Figure 4: Probability to park in a street as a function of 

different arrival and departure rate ratios. 
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First, we need a reasonable estimation τj of the PDF 

relaxation time. This one is impacted by all the (( + 1) 

eigenvalues of Q, but we know that those are spread around a 

mean time constant that depends on the trace of E: 

 1 τjb = −�[(E)( = λ + ?. ( + 12  

 

Then, we can choose some constant k  to define a 

reasonably small time step � = τj k⁄ , in order to catch the 

transient phase thanks to an approximation of 
h.-� , as 

follows: 

 


h.-� ≅ m-� =
M
NN
O1 − λ. � λ. � ⋯?. � 1 − (λ + ?). � ⋯2?. � ⋯⋮ ⋮ ⋯ ⋮⋯ λ. dt⋯ 1 − (?. �R

SS
T

 

Finally, the street occupancy PDF at the successive 

time steps is estimated by multiplying the initial distribution 

with this elementary transition matrix: 

 A(*. �) = A.. m�/ 
 

Figure 5 illustrates the comparison of the proposed 

approximation against the exact solution when k = 10. The 

three curves are plotted for a period of 5. τj in the case of a 

street capacity of 20 cars and with a mean parking time o μ⁄  

of 1000s. 

 

3. Street Parking Simulator 

Previous section brought us the different mathematical 

pieces needed to build a realistic parking simulator, based on 

the reasonable assumption that arrival and departure rates 

follow a Poisson process. Of course, those rates are difficult 

to measure and that is why a simulation is interesting. Its goal 

is not really to simulate a city centre perfectly, but rather to 

set up a reasonably realistic configuration for the study of our 

winning strategy. Because we fully know the simulation 

parameters, it is then possible to evaluate the strategy 

sensitivity to an imperfect knowledge of its environment. 

This simulator must support the following testing 

methodology: 

 

1. Setup a realistic map background; 

2. Configure the map with realistic driving speeds and 

probabilities to park; 

3. Clone the map, then corrupt its configuration somehow; 

4. Choose a starting point and goal point at random; 

5. Elaborate a parking route over the true map, according 

to a given strategy; 

6. Elaborate a parking route over the corrupted map, 

according to this same strategy; 

7. Compute performance indicators of the route found at 

step 5; 

8. Compute performance indicators of the route found at 

step 6 while applying it to the true map (instead of the 

corrupted one); 

9. Repeat at step 4 in order to average the indicators on 

different runs. 

 

The idea behind this methodology is to understand 

how much we can corrupt the underlying map attributes until 

the strategy stops to propose useful routes. The more these 

attributes are different from those considered when 

elaborating a parking route, the less the gain for the driver 

should be. However, we need a comparison point in order to 

compute how much time the strategy allows to save. 

For that purpose, we use a dumb strategy p_q based 

on a random walk in order to get a worst time to park bound. 

It is intended to simulate a highly inefficient (anti) strategy 

one could follow if he has absolutely no idea of where the 

parking spots are, or what the topology of its surroundings is. 

Its principle is as follows: the driver drives straight on its 

destination goal, without trying to park if it would have been 

possible to. Then, he starts searching randomly until any free 

spot is encountered: if the driver could not park in the current 

street, he selects the next one at random and repeats the 

process. 

3.1. Map Simulation and Initialisation 

The map is a small collection of edges extracted from 

a real map database and located around a city centre. For our 

work, we selected an area inside Brussels. The size of this 

area does not have to be particularly big but must be at least 

the quadruple of the maximum walking distance tolerated 

when parking around a destination. In all our test cases, we 

took a walking speed r of 3 *(/ℎ and a maximum walking 

time of 1000 t that results in a map of 4 *( wide. 

According to this study [10], the average driving speed 

for a trip inside Paris intra muros is around 15 *(/ℎ. Unless 

stated otherwise, we used this default value to compute the 

traversal time of every street in the map. 

In this other study [11], it is possible to get some 

insights about the number of parking places available on-

street in a municipality of Brussels. The typical density is 

between 10 and 20 spots by 100 (. However, we still need a 

means to convert the number of parking places in a street into 

an effective probability to park. Considering an average 

occupancy rate v , one possibility consists in using a 

numerical solver to find out [ = λ/? so that ∑ #. ABVB = v. (, 

then to derive the corresponding <]^_/. 

 
Figure 5: Approximation of the relaxation phase for 

different equilibria. 
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For the second option, we start from a binomial 

distribution, assuming a uniform repartition of the occupied 

spots. Put-in other words, we ignore any correlation effects 

between nearby parking places that could result from 

attractive spots in the city. Given a street with capacity (, the 

probability to park in this street becomes 1 − vD  and the 

complete PDF is given by: 

 ABwGB = xBD. (1 − v)D1B. vB 

 

Unfortunately, even if this distribution has the same 

general shape than our street probabilistic model, it 

overestimates <]^_/, as illustrated in Figure 6. We found out 

that a more accurate approximation of the probability to park 

resulting from a given average occupancy rate is adequately 

given by: 

 <y]^_/((, v) = 1 − vD1 − vD + vD 7⁄  

 

Figure 7 compares the exact and the approximate 

probability to park for different street capacities and 

occupancy rates. 

3.2. Evaluation of a Parking Route 

Given a road network graph � = (�, �), a path of � is 

a finite sequence z = (z. ⋯ zB) ∈ �∗  such that for all 0 ≤I ≤ # we have zG = (. , �G) and zG:c = (�G , . ), i.e consecutive 

edges are connected by the same vertex. In this work, we 

consider a parking strategy that defines the path a driver must 

follow from a given start location and leading around a target 

destination. This path is augmented with flags | indicating to 

the driver if he should or should not park at each edge (street) 

along the path. 

More formally, given a start vertex �} ∈ � and a target 

destination �� ∈ � , a parking strategy is a function 

 p: (� × ~0,1�)∗ → � × ~0,1� 
 

such that for all �(z., |.) ⋯ (zB, |B)� ∈ (� × ~0,1�)∗ 

 

we have  

�p�(z., |.) ⋯ (zB, |B)� = (zB:c, |B:c)zB = (. , �B)zB:c = (�B , . )  

 

The first edge of this path always starts at �}, i.e. z. =(�}, . ). However, none of the route edges has to contain the 

target vertex �� inevitably. Indeed, this latter is always joined 

on foot once a free parking spot is found and may be 

purposely avoided by the strategy. 

If the driver follows the parking strategy p from �} , 

then p  provides a unique flagged path � =(z., |.) ⋯ (zB, |B) that we call the parking path. The flags 

indicate the behaviour the driver should follow when any free 

spot is found along the path, as it may be interesting to get 

closer to the destination to minimize the total time to reach it. 

For example, the dumb strategy p_q sets those flags to zero 

up to ��, then put them all to one. 

As parking is probabilistic, without any guarantee of 

success, it is potentially a never ending process. Therefore, 

we need a criterion to stop expanding a path once it has 

reached a sufficient probability threshold to get parked. For 

that purpose, we start defining the success probability of any 

edge along the route. Let us first define some notations. 

 

Notations: Given a parking path � =(z., |.) ⋯ (zB, |B) ∈ (� × ~0,1�)∗  of � = (�, �) , let ���  be 

the time of arrival at zG and let )��V be the steady probability 

to park on zG. In addition, let’s define ���  the time elapsed 

since the last parking trial on the edge zG: 
 

��� ≔ �minH Y��� − ���Z if �J < I|zG = zH and |H = 1� ≠ ∅∞ else.  

 

Definition 1: Let z = (z. ⋯ zB) ∈ �∗ be a finite path 

of � = (�, �). For 0 ≤ I ≤ ( , if E��  denotes the generator 

matrix of edge zG , then the occupancy PDF on the 

corresponding edge is given by: 

 A������� ≔ (0, ⋯ 0,1). 
h�� .-���  
 

And the associated probability to park depends on the last 

element of this vector: 

 
Figure 6: Comparison of PDF resulting from the street 

probabilistic model and the binomial distribution. 

 
Figure 7: Comparison of the exact and approximated 

probability to park. 
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)��(���) = 1 − YA�������Z�D��� 
 

where [. ]  denotes the indexing operator and (��  is the 

capacity of the edge corresponding to zG. This probability is 

unconditional in the sense that it does not depend on the route 

strategy flag |G . Next definition takes this information into 

account. 

 

Definition 2: Let � = (z., |.) ⋯ (zB, |B) ∈ (� ×~0,1�)∗ be a finite parking path of � = (�, �). Then, for each 0 ≤ I ≤ # the effective probability to park on zG conditioned 

on the route strategy � is given  by: )��� = �)��(���) if |G = 1 0 if |G = 0  

 

Using the definitions above, we can now define the 

success probability of a complete route: 

 

Definition 3: Let � = (z., |.) ⋯ (zB, |B) ∈ (� ×~0,1�)∗ be a finite parking path of � = (�, �). The success 

probability of � , denoted ℙ�(�) , is defined as the 

complementary event of not finding any suitable parking spot 

along �: 

ℙ�(�) ≔ 1 − �� 1 −B
Ga. )��� � 

 

Thanks to this definition, we can stop expanding a 

route once its chance of success rises above a threshold that, 

in this work, we fix to 99%. Different routes resulting from 

different strategies can then be elaborated and compared on 

the same level. However, we now need some criterion to 

evaluate a route efficiency, that is, the expected total time to 

reach the target destination: 

 

Definition 4: Let �� ∈ �  be a target vertex and let � = (z., |.) ⋯ (zB, |B) ∈ (� × ~0,1�)∗  be a finite parking 

path of  � = (�, �) . For 0 ≤ I ≤ # , we denote by z�G  the 

partial path (zG ⋯ zB). Then, the expected total time to reach �� from zG is defined recursively by: 

 ���(z�G) = )��� . ���� + ������ + �1 − )��� �. ���(z�G:c)���(z�B:c) = 0  

 

Where �����  denotes the time needed to reach the 

destination vertex ��  from edge zG  on foot. It can be 

computed knowing a defined walking speed and thanks to the 

distance function ��(�). In other words, the expected total 

time is the sum of the time needed to reach a given road and 

park, then to walk to the destination, weighted by the 

respective probabilities to park. 

This expected total time is, however, of limited 

interest since it includes a route of arbitrary length depending 

on the distance between the start and target vertices. In order 

to compare different paths with each other, even when they 

don’t share the same locations, we need to decompose it into 

its different subparts: the time to get close enough to the 

destination, the time spent searching for a parking place and 

the final time on foot. For that matter, we first define the time 

the parking strategy actually begins: 

 

Definition 5: Let � = (z., |.) ⋯ (zB, |B) ∈ (� ×~0,1�)∗  be a finite parking path of  � = (�, �) . Then, the 

starting time �}�^_�(�) of the parking path � is defined by 

the time of arrival of the first street where the driver should 

park : 

� �}�^_�(�) ≔ �/* ≔ argminG (|G| |G = 1) 

 

With this later definition, it is now possible to rewrite 

the expected total time to park as follows: 

 ���(�) ≡ �}�^_�(�) + ���]^_/(z�.) + ���q^ /(z�.), 

 

where the first term simply enables to forget the first part of 

the route that is more related to classical routing than to the 

strategy itself. Then, the remaining time is split in two parts 

to differentiate how long we expect the driver to look for a 

parking place from how long we expect him to walk: 

 ���]^_/(z�G) = )��� . ���� − �}�^_�� + �1 − )��� �. ���]^_/(z�G:c)���q^ /(z�G) = )��� . ����� + �1 − )��� �. ���q^ /(z�G:c)  

4. Insights 

In the previous section, we described a methodology 

to evaluate the efficiency of parking routes returned by a 

parking strategy, along with the outline of the simulator 

needed to put it to work. We now turn our attention to the 

proper analysis of our parking strategy presented in [5]. We 

begin with a comparison against a worse case bound 

described earlier, that is, a dumb strategy based on a random 

walk. The idea is to get a clear understanding of how much 

time our winning strategy enables us to save in various 

situations, so that we can understand when it is worthwhile. 

In a second step, we study the sensitivity of this 

strategy to the incomplete knowledge of the parameters 

regulating the street dynamic. A clear illustration of this 

situation is the great difficulty to know the probability to park 

in a street when it tends towards zero, as it requires a huge 

amount of observations to discriminate between possible 

occupancy rates that are very close to each other. Therefore, 

 
Figure 8: Map background (zoom) located in Belgium 

at coordinates(¡. ¢£°;  ¦§. ¨¦°), with occupancy rate 

set to 98%. 
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the question that can be asked is how much this information 

is critical to not lose the benefit of the parking strategy.  

4.1. Winning Strategy Benefits 

Here, we first look at the winning strategy pure 

benefits by comparing its expected time to park against the 

random walk, considering a perfect knowledge of the street 

occupancy rates and other parameters. This analysis is 

performed with a simulator working as described in section 3. 

For each setup, the test is repeated 30 times with random 

starting and destination locations and the average result is 

reported. 

The background map of the simulation is the one given 

in Figure 8, whose centre coordinates are (4.36°;  50.85°). 

For simplicity, we consider a uniform occupancy rate across 

all the streets and a uniform repartition of the parking spots. 

Because different streets have different lengths, and thus 

different capacities, the resulting probabilities to park are 

proportional to those lengths. 

As described above, a strategy returns a route long 

enough to reach 99% probability to park. The simulator plays 

this route until its end, as if the driver never managed to park, 

and considers the parking flags to update the probabilities to 

park in the traversed streets: if a flag is set to true, the 

probability of the corresponding street is dropped to zero as 

soon as the car comes out. Then, each probability recovers to 

its initial value as time passes, depending on each street’s 

dynamic. 

It should be noted that considering uniform occupancy 

rate and parking spots distribution is conservative because at 

the advantage of the random walk strategy. Indeed, this 

strategy is a non-informed one and could not benefit of the 

actual parking distribution if it was not evenly scattered. 

Concretely, those 4 different parameters are needed to 

configure the simulator: 

 

1. The occupancy rate, which enables to derive a 

probability to park from a given street capacity, and thus 

the ratio λ ?b  ; 

2. The mean parking time of a single car 1 μ⁄ ; 

3. The driving speed which, combined with the street 

length, gives its traversal time; 
4. The parking spots density which, combined with the 

street length, gives its capacity. 
 

Figure 9 and Figure 10 illustrate the kind of parking 

routes returned by the winning strategy and by the random 

walk, respectively. As we can see, the former expands the 

search around the target location up to some distance and then 

tries to take advantage of resources reappearance at shorter 

distances. In addition, it tries to park early without even 

visiting the target location. On the other hand, the random 

walk drives straight to the destination, then, it tries its luck 

randomly. This behaviour is quite bad and we expect a sane 

driver to do better, but it offers a practical point of comparison. 

We compared those two strategies over this set of 

simulator parameters: 

 

1. Uniform occupancy rate v ∈~0.95; 0.97; 0.99; 0.995�; 

2. Uniform mean parking time 1/? = 1.5ℎ; 

3. Uniform driving speed of 15 *(/ℎ; 

4. Uniform parking density of 1 spot by 10 (, 

 

and reported the results in Table 1. For a fair comparison, it 

should be noted that given a start and end location, two 

different strategies don’t start searching for a parking place at 

the same time. In other words, ��®}�^_� ≠ ��®¯}�^_�. To deal with 

this shift, we simply match the time zero reference with the 

most anticipative ���}�^_�  and add an offset penalty to the 

searching time of the other strategy. 

As we could expect, the winning strategy does 

always better than the random walk. However, what is 

interesting to look at is the amount of time it finally allows 

the driver to spare. We can notice that with an occupancy rate 

as high as 95% the saving is only about 40 seconds, which is 

quite neglectable. The reason is simply because it is still easy 

to park in such circumstances and, therefore, there is not a lot 

to gain. However, the situation is much different in case of 

very rare parking availability. If a free spot could only be 

found every 200 parked cars, then the winning strategy offers 

an interesting saving of about 5 minutes. 

 
Figure 9: Route generated by the winning strategy. 

 
Figure 10: Route generated by a random walk once 

destination is reached. 
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 Of course, this conclusion is only as strong as the 

validity of the underlying assumptions, especially the one 

considering the uniform distribution of the different 

parameters. Anyway, the difference between those two 

strategies can only increase if one can benefit from additional 

knowledge like where the parking spots are or what are the 

true street travel times due to traffic. However, this is not the 

primary goal of this study, but rather to understand how 

strong are the savings given above under imperfect 

knowledge of the street parameters. 

4.2. Winning Strategy Sensitivity 

The previous sections gave us an idea of how much 

time a good parking strategy enables to save in various 

circumstances. Now, we can focus on the final goal of this 

study, that is, to understand how much such strategy 

withstands the partial and erroneous knowledge of the 

dynamic influencing the probability to park in streets. 

The idea to conduct this study consists in computing 

the parking strategy on a corrupted map, then by analysing its 

performance (i.e. the expected parking and walking time) on 

the true original map. If the strategy is near optimal, then, any 

degradation of the information used to build the parking 

routes should result in worse expected times once applied 

back to the ground truth. 

Occupancy Rate 

The first parameter that we studied is the estimated 

occupancy rate that directly drives the probabilities to park in 

the different streets and the result is depicted in Figure 11. 

The four graphs show the level of expected time to park and 

walking time as a function of the estimated occupancy rate. 

The four cases correspond to different ground truth regarding 

the real occupancy rate. Each time, the performance of the 

random walk is given by the red line and the other parameters 

remain fixed. 

Let’s look at the upper left graph for a real occupancy 

rate of 95%. What we can notice is that the minimum of the 

total time to destination occurs in the case the guess is correct. 

Overestimating the difficulty to park lowers the driving time 

as the parking strategy anticipates too much and tries to park 

too far from the goal. As a result, the walking time explodes 

and may finally ruin any benefit as the total time may become 

worse than the random walk. In addition, we expect this 

situation to be very frustrating for the driver as in general one 

prefers to walk as few as possible. 

The situation is quite different for the lower right 

graph with a real occupancy rate of 99.5%. Underestimating 

the difficulty results in a situation where the strategy tries to 

park too close to the goal, which lowers a bit the walking time 

but increases quite much the parking time. However, even if 

the total saved time is less, the strategy remains always better 

than the random walk. 

Those graphs also show that a rough and easy guess of 

the occupancy rates (and thus of the real probabilities to park) 

may be enough for a parking strategy to operate successfully. 

For example, estimating the occupancy rate to be 97% 

everywhere would not degrade the strategy too much when 

parking is easy (i.e. v less than 95%), but would still enable 

to save a good share of the potential gain when parking is hard. 

In others words, we suggest that knowing the street capacities, 

along with a rough guess of the average occupancy rate 

enables to derive probabilities good enough for a parking 

strategy like the winning strategy to perform well. 

Mean Parking Time 

We saw in section 2 that, knowing a street capacity, 

the steady probability to park only depends on the ratio r =λ/μ, that is, the ratio of demand over supply. However, the 

exact scaling of one of those parameters fixes the churn rate, 

that is, how often parking events occur in a given time interval. 

Of both, this is the mean parking time 1 μ⁄  that we choose to 

fix as it has a simple meaning: how long does a single car stay 

parked in average? Studies show that this value revolves 

around 1.5 hour, but we can expect it to change depending on 

the parking context. For example, it may be closer to half an 

hour around a shopping mall while it should last several hours 

in a company parking or in a residential area during the night. 

Anyway, the range of reasonable values is well delimited and 

our goal is now to determine how much guessing this value 

right is important for a parking strategy. 

Figure 12 illustrates how much the total parking time 

varies with the estimations, for different real average parking 

times. The four graphs correspond to an occupancy rate of 99% 

and the random walk performance is once again depicted by 

the red line. As expected, the best results always happen when 

the guesses match the ground truth. If we look at the upper 

left graph, we see that overestimating the parking time results 

in a worse exploitation of the parking spots reappearance. The 

walking time is a bit greater as the strategy prefers to look 

further from the destination once the nearby streets have been 

tested. 

On the other hand, the lower right graph illustrates the 

impact of underestimating the parking time. In such a case, 

the strategy is reluctant to explore too far from the destination, 

still counting on a good chance to find a free spot nearby 

because of the advantageous expected churn rate. Then, the 

search time increases more than the final gain on the walking 

time as this probability is not that high. 

In any case, we can see that this parameter can really 

have a low impact provided that we chose it wisely. 

Estimating this value to be around 2 hours enables to benefit 

from the churn rate without impacting too much the cases 

where it is not as favourable.  

Road Traversal Times 

Up to now we have always considered uniform 

distributions of the parameter we wanted to study. We take 

here another approach to look at the influence of the traversal 

time of the map different streets, or equivalently, to the 

driving speed. Because of inherent imbalances and 

maladjustments in the road network, time lost in the traffic is 

far from uniform, even if the average driving speed is quite 

stable on longer distances. To reflect this situation, we now 

Table 1: Comparison of expected parking time with 

perfect knowledge of the environment, separated in 

search time and walking time, in seconds. 

v 
Winning Strategy Random Walk 

srch. wlk. tot. srch. wlk. tot. 

95% 63 98 161 79 125 204 
97% 102 117 219 139 170 309 
99% 284 150 434 403 254 657 
99.5% 540 159 699 738 294 1032 
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consider that the average driving speed is constant and well 

known, but that the precise speed of each street may randomly 

vary is some defined interval. 

The result of this setup is given in Figure 13 for an 

average driving speed that is always fixed to 15 *(/ℎ. The 

four graphs correspond to different occupancy rates and the 

curves are plotted for different [(I#;  (°±] speed intervals. 

The green curve relates to a winning strategy informed of the 

exact travel time of each street, while the purple one considers 

only the mean travel speed to elaborate its parking path. As 

before, the red curve relates to the random walk. 

We can see that even the informed winning strategy is 

affected by the increase of speed dispersion around the 

average. This seems natural as this modification simply adds 

new constraints to take into account during the determination 

of the optimal path. However, this increase remains 

reasonable and is less than 1.5 minute in the 99.5% occupancy 

rate case. 

In the other hand, both the uninformed winning 

strategy and the random walk suffer equally well of this 

difference between the ground truth and their expectation. 

This first means that the winning strategy remains just as 

interesting as before, even without the exact knowledge of the 

travel time, but it also means that knowing the traffic 

conditions may considerably improve its performances. This 

situation is even more important that it is very frustrating to 

get caught in a traffic jam when trying to find a parking place. 

Wrapping up 

In the previous paragraphs, we showed various graphs 

giving how much additional time is required if our winning 

strategy has not a perfect knowledge of the parking conditions. 

Any deviation deteriorates the potential benefits but not all 

parameters are equally important. To support this statement, 

Table 2 gives the impact of the different approximations 

studied so far, for various occupancy rates. Those numbers 

correspond to the additional time it would be possible to save 

when parking if the strategy would have access to the 

complete information instead to a rough guess. They are only 

valid in the limited context of those simulations but they 

highlight nonetheless an important trend. 

The mean parking time, directly connected to the 

churn rate, is maybe the more difficult to collect without 

metered parking spots. Fortunately, this is also the one 

showing the lowest sensitivity and we saw that considering 

an intermediate value around 2 hours give satisfactory results. 

The mean occupancy rate, directly connected to the 

individual street probabilities, proves to have more impact. In 

addition, a pernicious effect of the winning strategy is that 

overestimating the difficulty to park can deteriorate the gain 

by an excess of anticipation, resulting in parking too far from 

the driver destination. However, this effect can be easily 

mitigated by the proper choice of an intermediate value. For 

example, the maximum expected gain in the 99.5 % case is 

around 6 minutes, but 3 4⁄  of this saving can be easily 

achieved just by considering a uniform distribution around 97% 

occupancy. Off course, a better knowledge of the real 

probabilities to park enables to improve the gain further, but 

this moderate increase comes at the cost of difficult means to 

collect this information. This is indeed an uneasy variable to 

measure as it requires a global solution to count, either the 

number of vacant parking spots across the different streets of 

a city, or the ratio of successful and unsuccessful parking 

attempts from different drivers. Both approaches are 

challenging. 

Finally, an important information to consider is the 

traffic influencing the travel time in each street. The average 

driving speed itself does not impact too much the parking path 

returned by the winning strategy. However, the dispersion of 

those speeds among congested and uncongested streets can 

considerably deteriorate the final savings when the strategy is 

not aware of this information. Typically, this degradation in 

our simulations can be four times more important that 

ignoring the exact probabilities to park. Traffic is thus first 

choice information to consider to increase the quality the 

parking strategy. 

5. Conclusion 

In this paper, we investigate the sensitivity of a 

probabilistic parking strategy regarding the inaccurate 

knowledge of the different parameters affecting the way an 

optimal path is computed. We aim to understand how much 

knowing the probabilities to park and the other factors 

impacting the efficiency of a parking strategy is important to 

preserve the final gain of time experienced by the driver. 

Because this kind of information is difficult to collect, we 

 
Figure 11: Sensitivity of the winning strategy regarding 

the estimation of the occupancy rate, for 4 different 

ground truths (95; 97; 99 and 99.5%). 

 
Figure 12: Sensitivity of the winning strategy regarding 

the estimation of the mean parking time, for 4 different 

ground truths (0.5; 1; 2 and 4 hours). 
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propose a complete setup to reasonably simulate various 

parking situations that enable to fix a ground truth and test a 

parking path on it. This simulator allows configuring various 

parameters and supports short and long-term observations 

regarding the probability to park. 

Based on this environment, we propose a 

methodology to measure the expected time needed to reach a 

suitable parking spot and to walk to a destination, knowing a 

parking path elaborated by a parking strategy. A first 

comparison with a dumb random walk strategy enables to get 

an idea of how much time this path is efficient and allows the 

driver to spare time during its journey. 

We finally study the sensitivity of one parking strategy, 

namely the winning strategy, regarding the erroneous 

estimation of different parameters. More particularly, we run 

various simulations to understand the impact of inaccurate 

estimates on the occupancy rates, the mean parking times and 

on the road traversal times. Thanks to the parking simulator 

and the test methodology we are able to weight the influence 

of all those variables regarding the behaviour of the studied 

strategy. All imprecise estimates degrade the final gain by 

some factor, but the important finding is the quantification of 

the lost. We demonstrate that the knowledge of the 

probability to park and the churn rate provide a lower 

improvement that taking the traffic and the parking spot 

locations into account. As this latter information is far easier 

to collect, we think that it can constitute a first viable step 

towards the implementation of a helpful parking strategy 

inside navigation systems. 
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Figure 13: Sensitivity of the winning strategy regarding 

the driving speed distribution, for an average mean 

speed of 15km/h. 

Table 2: Expected additional parking time in case of 

various approximations, in seconds, for different 

occupancy rate conditions. 

 Occupancy rate 

Approximation: 95 97 99 99.5 

Unif. mean parking time of 2ℎ 5 10 15 19 
Unif. occ. rate of 97% 0 0 25 57 
Unif. driving speed of 15*(/ℎ 33 37 100 238 

 


